Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We study the formation of stars with varying amounts of heavy elements synthesized by the rapid neutron-capture process (r-process) based on our detailed cosmological zoom-in simulation of a Milky Way–like galaxy with anN-body/smoothed particle hydrodynamics code,asura. Most stars with no overabundance inr-process elements, as well as the stronglyr-process-enhanced (RPE)r-II stars ([Eu/Fe] > +0.7), are formed in dwarf galaxies accreted by the Milky Way within the 6 Gyr after the Big Bang. In contrast, over half of the moderately enhancedr-I stars (+0.3 < [Eu/Fe] ≤ +0.7) are formed in the main in situ disk after 6 Gyr. Our results suggest that the fraction ofr-I andr-II stars formed in disrupted dwarf galaxies is larger the higher their [Eu/Fe] is. Accordingly, the most strongly enhancedr-III stars ([Eu/Fe] > +2.0) are formed in accreted components. These results suggest that non-r-process-enhanced stars andr-II stars are mainly formed in low-mass dwarf galaxies that hosted either none or a single neutron star merger, while ther-I stars tend to form in the well-mixed in situ disk. We compare our findings with high-resolution spectroscopic observations of RPE metal-poor stars in the halo and dwarf galaxies, including those collected by theR-Process Alliance. We conclude that observed [Eu/Fe] and [Eu/Mg] ratios can be employed in chemical tagging of the Milky Way’s accretion history.more » « lessFree, publicly-accessible full text available September 3, 2026
-
Abstract We introduce new high-resolution galaxy simulations accelerated by a surrogate model that reduces the computation cost by approximately 75%. Massive stars with a zero-age main-sequence mass of more than about 10M⊙explode as core-collapse supernovae (CCSNe), which play a critical role in galaxy formation. The energy released by CCSNe is essential for regulating star formation and driving feedback processes in the interstellar medium (ISM). However, the short integration time steps required for SN feedback have presented significant bottlenecks in astrophysical simulations across various scales. Overcoming this challenge is crucial for enabling star-by-star galaxy simulations, which aim to capture the dynamics of individual stars and the inhomogeneous shell’s expansion within the turbulent ISM. To address this, our new framework combines direct numerical simulations and surrogate modeling, including machine learning and Gibbs sampling. The star formation history and the time evolution of outflow rates in the galaxy match those obtained from resolved direct numerical simulations. Our new approach achieves high-resolution fidelity while reducing computational costs, effectively bridging the physical scale gap and enabling multiscale simulations.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract Metal-poor stars enriched by a single supernova (mono-enriched stars) are direct proof (and provide valuable probes) of supernova nucleosynthesis. Photometric and spectroscopic observations have shown that metal-poor stars have a wide variety of chemical compositions; the star’s chemical composition reflects the nucleosynthesis process(es) that occurred before the star’s formation. While the identification of mono-enriched stars enables us to study the ejecta properties of a single supernova, the fraction of mono-enriched stars among metal-poor stars remains unknown. Here we identify mono-enriched stars in a dwarf galaxy cosmological zoom-in simulation resolving individual massive stars. We find that the fraction of mono-enriched stars is higher for lower metallicity in stars with [Fe/H] < −2.5. The percentages of mono-enriched stars are 11% at [Fe/H] = −5.0 and 1% at [Fe/H] = −2.5, suggesting that most metal-poor stars are affected by multiple supernovae. We also find that mono-enriched stars tend to be located near the center of the simulated dwarf. Such regions will be explored in detail in upcoming surveys such as the Prime Focus Spectrograph on the Subaru telescope.more » « lessFree, publicly-accessible full text available February 13, 2026
-
ABSTRACT The r-process-enhanced (RPE) stars provide fossil records of the assembly history of the Milky Way (MW) and the nucleosynthesis of the heaviest elements. Observations by the R-Process Alliance (RPA) and others have confirmed that many RPE stars are associated with chemo-dynamically tagged groups, which likely came from accreted dwarf galaxies of the MW. However, we do not know how RPE stars are formed. Here, we present the result of a cosmological zoom-in simulation of an MW-like galaxy with r-process enrichment, performed with the highest resolution in both time and mass. Thanks to this advancement, unlike previous simulations, we find that most highly RPE (r-II; [Eu/Fe] > +0.7) stars are formed in low-mass dwarf galaxies that have been enriched in r-process elements for [Fe/H] $$\lt -2.5$$, while those with higher metallicity are formed in situ, in locally enhanced gas clumps that were not necessarily members of dwarf galaxies. This result suggests that low-mass accreted dwarf galaxies are the main formation site of r-II stars with [Fe/H] $$\, \lt -2.5$$. We also find that most low-metallicity r-II stars exhibit halo-like kinematics. Some r-II stars formed in the same halo show low dispersions in [Fe/H] and somewhat larger dispersions of [Eu/Fe], similar to the observations. The fraction of simulated r-II stars is commensurate with observations from the RPA, and the distribution of the predicted [Eu/Fe] for halo r-II stars matches that observed. These results demonstrate that RPE stars can be valuable probes of the accretion of dwarf galaxies in the early stages of their formation.more » « less
An official website of the United States government
